metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

F. Albert Cotton,^a⁺ James P. Donahue,^a Chun Lin,^a Carlos A. Murillo^{a,b}* and Jeffrey Rockwell^a

 ^aDepartment of Chemistry and Laboratory for Molecular Structure and Bonding, PO Box 30012, Texas A&M University, College Station, Texas 77842-3012, USA, and
^bDepartment of Chemistry, University of Costa Rica, Ciudad Universitaria, Costa Rica

† Additional correspondence author; email: cotton@tamu.edu

Correspondence e-mail: murillo@tamu.edu

Key indicators

Single-crystal X-ray study T = 213 K Mean σ (C–C) = 0.010 Å H-atom completeness 78% Disorder in solvent or counterion R factor = 0.057 wR factor = 0.166 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A molecular pair having two quadruply bonded dimolybdenum units linked by a terephthalate dianion

The title compound, μ -terephthalate-bis[tris(μ -N,N'-di-p-anisylformamidinate)dimolybdenum(II)] hexane disolvate, [{Mo₂(DAniF)₃}₂(μ -O₂CC₆H₄CO₂)] (DAniF is N,N'-di-p-anisylformamidinate, C₁₅H₁₅N₂O₂) crystallizes as the bis(-hexane) solvate, in the form of large red needles, in space group $P2_1/c$. The molecule sits on an inversion center, and the bridging aryl ring displays a twist angle of 8.6 (10)° with respect to the plane defined by the two Mo₂ axes. Received 17 April 2002 Accepted 16 May 2002 Online 24 May 2002

Comment

We have been interested in the preparation, structural characterization, and electrochemical study of compounds having metal-metal bonded units linked by a variety of groups, such as dicarboxylates (Cotton, Lin & Murillo, 2001*a*, 2002), XO_4^{2-} (for X = S, Mo, and W) (Cotton, Donahue & Murillo, 2001), CO_3^{2-} (Cotton, Lin & Murillo, 2001*b*), and diamidates (Cotton, Daniels *et al.*, 2002). These give rise to a number of molecular architectures such as pairs, triangles, squares, cages, one- and two-dimensional arrays, and more complex structures.

N, N'-di(p-anisyl)formamidinate = (DAniF)

Figure 1

Generic structure type for dicarboxylate bridged pairs of $Mo_2(DAniF)_3]^+$ units.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

The simplest members of the family are pairs with two quadruply bonded Mo₂(DAniF)₃⁺ units linked by dicarboxylate anions (A in Fig. 1). Here DAniF represents the anion of N, N'-di-*p*-anisylformamidine. For dicarboxylate linkers, we have reported 14 structures ranging from oxalate, the simplest of the family, to units of various lengths and degrees of conjugation (Cotton, Donahue, Lin & Murillo, 2001), with some also having chiral linkages (Cotton, Donahue & Murillo, 2002). Compounds of this type generally display two reversible oxidations, one corresponding to each Mo_2^{4+} unit, the separation between which is determined by the length and nature of the dicarboxylate bridge. To provide a structural benchmark and a more complete context for discussion of the properties of bridged compounds with aryl linkers, we now present the structure of [{Mo₂(DAniF)₃}₂- $(\mu - O_2 CC_6 H_4 CO_2)] \cdot 2C_6 H_{14}, (I).$

Compound (I) was prepared in 57% yield by method B of a literature procedure (Cotton, Donahue, Lin & Murillo, 2001) and crystallized as large red needles. The bridging aryl ring displays a twist angle of 8.6 $(10)^{\circ}$ with respect to the plane defined by the two Mo_2 axes (Fig. 2). This value is relatively modest compared to the corresponding angles of 30.6, 34.2,

Figure 2

The core structure of $[{Mo_2(DAniF)_3}_2(\mu-O_2C_6H_4CO_2)]$, showing 50% probability displacement ellipsoids. For clarity, the p-anisyl groups and all H atoms have been omitted.

and 32.9° observed, respectively, in the structures of $[{Mo_2(DAniF)_3}_2(\mu - O_2CC_6F_4CO_2)]$ (Cotton, Donahue, Lin & Murillo, 2001), [$\{Mo_2(DAniF)_3\}_2$ { μ -OCN(Ph)C₆H₄CON(Ph)}] (Cotton, Daniels et al., 2002), and [{Mo₂(DAniF)₃}₂{µ- $OCN(m-CF_3Ph)C_6H_4CON(m-CF_3Ph)$] (Cotton, Daniels et al., 2002). One effect of this out-of-plane twist is that the $\Delta E_{1/2}$ between successive Mo_2^{4+}/Mo_2^{5+} oxidations is small (100 mV) and of a value consistent with through-space interaction rather than effective communication through the aryl π system. The distance between the centers of the Mo_2 units is 11.236 Å; all other metric parameters (Table 1), including the Mo-Mo distance of 2.0904 (7) Å, are unexceptional.

Future work will describe the preparations, crystal structures, electrochemistry, absorption spectra, and electronic structures, as revealed by both static and time-dependent DFT (density functional theory) calculations of a new series of $[{Mo_2(DAniF)_3}_2(\mu - O_2CXCO_2)]$ compounds, where the bridging species are highly unsaturated dicarboxylate dianions.

Experimental

The title compound was prepared according to method B in the published procedure of Cotton et al. (2001) and crystallized as the bis(hexane) solvate by diffusion of hexanes into a dichloromethane solution under an N2 atmosphere.

Crystal data

$[Mo_4(C_{15}H_{15}N_2O_2)_{6}-$	$D_{\rm x} = 1.463 {\rm Mg} {\rm m}^{-3}$	
$(C_8H_4O_4)]\cdot 2C_6H_{14}$	Mo $K\alpha$ radiation	
$M_r = 2251.96$	Cell parameters from 5933	
Monoclinic, $P2_1/c$	reflections	
a = 14.6579 (15) Å	$\theta = 2.2-24.8^{\circ}$	
b = 18.1630(19) Å	$\mu = 0.55 \text{ mm}^{-1}$	
c = 19.268 (2) Å	T = 213 (2) K	
$\beta = 94.621 \ (2)^{\circ}$	Needle, red	
V = 5113.2 (9) Å ³	$0.46 \times 0.15 \times 0.08 \text{ mm}$	
Z = 2		

Data collection

F

2

Bruker SMART 1000 area-detector	9046 independent reflections
diffractometer	5610 reflections with $I > 2\sigma(I)$
v scans	$R_{\rm int} = 0.069$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$
(SADABS; Blessing, 1995)	$h = -10 \rightarrow 17$
$T_{\min} = 0.788, T_{\max} = 0.958$	$k = -21 \rightarrow 21$
9479 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.166$ S = 1.049046 reflections 626 parameters H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0798P)^2]$
+ 6.2815P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.029$
$\Delta \rho_{\rm max} = 1.11 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$

 $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Mo1-Mo2	2.0904 (7)	N2-C13	1.425 (7)
Mo1-N3	2.123 (5)	N3-C20	1.333 (8)
Mo1-O1	2.144 (4)	N3-C21	1.415 (8)
Mo1-N5	2.152 (5)	N4-C20	1.324 (8)
Mo1-N1	2.155 (5)	N4-C28	1.439 (7)
Mo2-N4	2.119 (5)	N5-C35	1.317 (8)
Mo2-O2	2.122 (4)	N5-C36	1.433 (7)
Mo2-N6	2.137 (5)	N6-C35	1.326 (7)
Mo2-N2	2.137 (5)	N6-C43	1.408 (8)
O1-C1	1.266 (7)	C1-C2	1.473 (8)
O2-C1	1.279 (6)	C2 - C4	1.395 (8)
N1-C5	1.327 (7)	C2-C3	1.398 (8)
N1-C6	1.413 (8)	$C3-C4^{i}$	1.364 (9)
N2-C5	1.322 (8)	C4-C3 ⁱ	1.364 (9)
Mo2-Mo1-N3	92.69 (14)	C5-N2-Mo2	116.6 (4)
Mo2-Mo1-O1	91.33 (11)	C13-N2-Mo2	122.9 (4)
N3-Mo1-O1	175.97 (18)	C20-N3-C21	118.8 (5)
Mo2-Mo1-N5	93.70 (13)	C20-N3-Mo1	117.3 (4)
N3-Mo1-N5	91.8 (2)	C21-N3-Mo1	122.7 (4)
O1-Mo1-N5	88.23 (17)	C20-N4-C28	120.2 (5)
Mo2-Mo1-N1	92.10 (14)	C20-N4-Mo2	117.7 (4)
N3-Mo1-N1	91.6 (2)	C28-N4-Mo2	120.6 (4)
O1-Mo1-N1	87.95 (17)	C35-N5-C36	117.4 (5)
N5-Mo1-N1	173.13 (18)	C35-N5-Mo1	115.4 (4)
Mo1-Mo2-N4	92.81 (14)	C36-N5-Mo1	127.1 (4)
Mo1-Mo2-O2	92.45 (11)	C35-N6-C43	117.8 (5)
N4-Mo2-O2	174.51 (17)	C35-N6-Mo2	117.5 (4)
Mo1-Mo2-N6	91.96 (13)	C43-N6-Mo2	124.3 (4)
N4-Mo2-N6	91.58 (19)	O1-C1-O2	122.5 (5)
O2-Mo2-N6	89.82 (17)	O1-C1-C2	120.1 (5)
Mo1-Mo2-N2	93.49 (13)	O2 - C1 - C2	117.3 (5)
N4-Mo2-N2	92.7 (2)	C4-C2-C3	117.6 (6)
O2-Mo2-N2	85.39 (17)	C4-C2-C1	121.6 (5)
N6-Mo2-N2	172.9 (2)	C3-C2-C1	120.9 (5)
C1-O1-Mo1	116.9 (4)	$C4^{i}-C3-C2$	121.7 (6)
C1-O2-Mo2	116.7 (4)	$C3^{i} - C4 - C2$	120.8 (6)
C5-N1-C6	118.8 (5)	N2-C5-N1	120.7 (6)
C5-N1-Mo1	116.7 (4)	N4-C20-N3	119.5 (6)
C6-N1-Mo1	124.5 (4)	N5-C35-N6	121.3 (6)
C5-N2-C13	118.6 (5)		

Symmetry code: (i) 2 - x, 2 - y, -z.

All H atoms were refined as riding atoms with isotropic displacement parameters. The molecules of interstitial hexanes were highly disordered and were refined with fixed partial site-occupancy factors. Disorder in a *p*-methoxy group of one of the N,N'-di-*p*-anisylformamidinate ligands caused slight oscillation of its H atoms; this gradually diminished as the structure was subjected to extended refinement cycles.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1997); software used to prepare material for publication: *SHELXL97*.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Bruker (2000). SMART. Version 5.618. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A., Daniels, L. M., Donahue, J. P., Liu, C. Y. & Murillo, C. A. (2002). Inorg. Chem. 41, 1354–1356.
- Cotton, F. A., Donahue, J. P., Lin, C. & Murillo, C. A. (2001). *Inorg. Chem.* 40, 1234–1244.
- Cotton, F. A., Donahue, J. P. & Murillo, C. A. (2001). *Inorg. Chem.* 40, 2229–2233.
- Cotton, F. A., Donahue, J. P. & Murillo, C. A. (2002). *Inorg. Chem. Commun.* 5, 59–63.
- Cotton, F. A., Lin, C. & Murillo, C. A. (2001a). Acc. Chem. Res. 34, 759-771.
- Cotton, F. A., Lin, C. & Murillo, C. A. (2001b). J. Am. Chem. Soc. 123, 2670– 2671.
- Cotton, F, A., Lin, C. & Murillo, C. A. (2002). Proc. Natl Acad. Sci. USA, 99, 4810–4813.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXTL-Plus.* Bruker AXS Inc., Madison, Wisconsin, USA.