Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

F. Albert Cotton, ${ }^{\mathrm{a}} \boldsymbol{\dagger}$ James \mathbf{P}.

Donahue, ${ }^{\text {a }}$ Chun Lin, ${ }^{\text {a }}$ Carlos A. Murillo ${ }^{\text {a,b}}$ and Jeffrey Rockwell ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry and Laboratory for Molecular Structure and Bonding, PO Box 30012, Texas A\&M University, College Station, Texas 77842-3012, USA, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Costa Rica, Ciudad Universitaria, Costa Rica

+ Additional correspondence author; email:
cotton@tamu.edu
Correspondence e-mail: murillo@tamu.edu

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
H -atom completeness 78%
Disorder in solvent or counterion
R factor $=0.057$
$w R$ factor $=0.166$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A molecular pair having two quadruply bonded dimolybdenum units linked by a terephthalate dianion

The title compound, μ-terephthalate-bis $\left[\operatorname{tris}\left(\mu-N, N^{\prime}\right.\right.$-di- p anisylformamidinate)dimolybdenum(II)] hexane disolvate, $\left[\left\{\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)\right]$ (DAniF is N, N^{\prime}-di- p anisylformamidinate, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$) crystallizes as the bis(hexane) solvate, in the form of large red needles, in space group $P 2_{1} / c$. The molecule sits on an inversion center, and the bridging aryl ring displays a twist angle of $8.6(10)^{\circ}$ with respect to the plane defined by the two Mo_{2} axes.

Comment

We have been interested in the preparation, structural characterization, and electrochemical study of compounds having metal-metal bonded units linked by a variety of groups, such as dicarboxylates (Cotton, Lin \& Murillo, 2001a, 2002), $\mathrm{XO}_{4}{ }^{2-}$ (for $X=\mathrm{S}$, Mo, and W) (Cotton, Donahue \& Murillo, 2001), $\mathrm{CO}_{3}{ }^{2-}$ (Cotton, Lin \& Murillo, 2001b), and diamidates (Cotton, Daniels et al., 2002). These give rise to a number of molecular architectures such as pairs, triangles, squares, cages, one- and two-dimensional arrays, and more complex structures.

(A)

Figure 1

Generic structure type for dicarboxylate bridged pairs of $\left.\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right]^{+}$ units.

Received 17 April 2002 Accepted 16 May 2002 Online 24 May 2002

(I)

The simplest members of the family are pairs with two quadruply bonded $\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}{ }^{+}$units linked by dicarboxylate anions (A in Fig. 1). Here DAniF represents the anion of N, N^{\prime}-di-p-anisylformamidine. For dicarboxylate linkers, we have reported 14 structures ranging from oxalate, the simplest of the family, to units of various lengths and degrees of conjugation (Cotton, Donahue, Lin \& Murillo, 2001), with some also having chiral linkages (Cotton, Donahue \& Murillo, 2002). Compounds of this type generally display two reversible oxidations, one corresponding to each $\mathrm{Mo}_{2}{ }^{4+}$ unit, the separation between which is determined by the length and nature of the dicarboxylate bridge. To provide a structural benchmark and a more complete context for discussion of the properties of bridged compounds with aryl linkers, we now present the structure of $\left[\left\{\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right\}_{2}{ }^{-}\right.$ $\left.\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{14}$, (I).

Compound (I) was prepared in 57% yield by method B of a literature procedure (Cotton, Donahue, Lin \& Murillo, 2001) and crystallized as large red needles. The bridging aryl ring displays a twist angle of $8.6(10)^{\circ}$ with respect to the plane defined by the two Mo_{2} axes (Fig. 2). This value is relatively modest compared to the corresponding angles of $30.6,34.2$,

Figure 2
The core structure of $\left[\left\{\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)\right]$, showing 50% probability displacement ellipsoids. For clarity, the p-anisyl groups and all H atoms have been omitted.
and 32.9° observed, respectively, in the structures of $\left[\left\{\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{~F}_{4} \mathrm{CO}_{2}\right)\right]$ (Cotton, Donahue, Lin \& Murillo, 2001), $\left[\left\{\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right\}_{2}\left\{\mu-\mathrm{OCN}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CON}(\mathrm{Ph})\right\}\right]$ (Cotton, Daniels et al., 2002), and $\left[\left\{\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right\}_{2}\{\mu\right.$ -$\left.\left.\mathrm{OCN}\left(m-\mathrm{CF}_{3} \mathrm{Ph}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CON}\left(m-\mathrm{CF}_{3} \mathrm{Ph}\right)\right\}\right]$ (Cotton, Daniels et al., 2002). One effect of this out-of-plane twist is that the $\Delta E_{1 / 2}$ between successive $\mathrm{Mo}_{2}{ }^{4+} / \mathrm{Mo}_{2}{ }^{5+}$ oxidations is small $(100 \mathrm{mV})$ and of a value consistent with through-space interaction rather than effective communication through the aryl π system. The distance between the centers of the Mo_{2} units is $11.236 \AA$; all other metric parameters (Table 1), including the Mo-Mo distance of 2.0904 (7) \AA, are unexceptional.

Future work will describe the preparations, crystal structures, electrochemistry, absorption spectra, and electronic structures, as revealed by both static and time-dependent DFT (density functional theory) calculations of a new series of $\left[\left\{\mathrm{Mo}_{2}(\mathrm{DAniF})_{3}\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CXCO}_{2}\right)\right]$ compounds, where the bridging species are highly unsaturated dicarboxylate dianions.

Experimental

The title compound was prepared according to method B in the published procedure of Cotton et al. (2001) and crystallized as the bis(hexane) solvate by diffusion of hexanes into a dichloromethane solution under an N_{2} atmosphere.

Crystal data

H -atom parameters constrained

$\left[\mathrm{Mo}_{4}\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{6^{-}}\right.$	$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
$\left.\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{14}$	Mo $K \alpha$ radiation
$M_{r}=2251.96$	Cell parameters from 5933
Monoclinic, $P 2_{1} / c$	reflections
$a=14.6579(15) \AA$	$\theta=2.2-24.8^{\circ}$
$b=18.1630(19) \AA$	$\mu=0.55 \mathrm{~mm}^{-1}$
$c=19.268(2) \AA$	$T=213(2) \mathrm{K}$
$\beta=94.621(2)^{\circ}$	Needle, red
$V=5113.2(9) \AA^{3}$	$0.46 \times 0.15 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART 1000 area-detector	9046 independent reflections
\quad diffractometer	5610 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.069$
Absorption correction: multi-scan	$\theta_{\max }=25.1^{\circ}$
$\quad(S A D A B S ;$ Blessing, 1995)	$h=-10 \rightarrow 17$
$\quad T_{\min }=0.788, T_{\max }=0.958$	$k=-21 \rightarrow 21$
29479 measured reflections	$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.166$
$S=1.04$
9046 reflections
626 parameters
$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5933
reflections
$\theta=2.2-24.8^{\circ}$
$\mu=0.55 \mathrm{~mm}^{-1}$
$T=213(2) \mathrm{K}$
$0.46 \times 0.15 \times 0.08 \mathrm{~mm}$
$V=5113.2(9) \AA^{3}$

9046 independent reflections
5610 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=25.1$
$k=-21 \rightarrow 21$
$l=-22 \rightarrow 22$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0798 P)^{2} \\
&+6.2815 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.029 \\
& \Delta \rho_{\max }=1.11 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.63 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Mo1-Mo2	2.0904 (7)	N2-C13	1.425 (7)
Mo1-N3	2.123 (5)	N3-C20	1.333 (8)
Mo1-O1	2.144 (4)	N3-C21	1.415 (8)
Mo1-N5	2.152 (5)	N4-C20	1.324 (8)
Mo1-N1	2.155 (5)	N4-C28	1.439 (7)
Mo2-N4	2.119 (5)	N5-C35	1.317 (8)
$\mathrm{Mo} 2-\mathrm{O} 2$	2.122 (4)	N5-C36	1.433 (7)
Mo2-N6	2.137 (5)	N6-C35	1.326 (7)
Mo2-N2	2.137 (5)	N6-C43	1.408 (8)
O1-C1	1.266 (7)	C1-C2	1.473 (8)
$\mathrm{O} 2-\mathrm{C} 1$	1.279 (6)	C2-C4	1.395 (8)
N1-C5	1.327 (7)	C2-C3	1.398 (8)
N1-C6	1.413 (8)	$\mathrm{C} 3-\mathrm{C} 4^{\text {i }}$	1.364 (9)
N2-C5	1.322 (8)	$\mathrm{C} 4-\mathrm{C3}^{\text {i }}$	1.364 (9)
Mo2-Mo1-N3	92.69 (14)	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{Mo} 2$	116.6 (4)
Mo2-Mo1-O1	91.33 (11)	C13-N2-Mo2	122.9 (4)
N3-Mo1-O1	175.97 (18)	C20-N3-C21	118.8 (5)
Mo2-Mo1-N5	93.70 (13)	C20-N3-Mo1	117.3 (4)
N3-Mo1-N5	91.8 (2)	C21-N3-Mo1	122.7 (4)
O1-Mo1-N5	88.23 (17)	C20-N4-C28	120.2 (5)
Mo2-Mo1-N1	92.10 (14)	C20-N4-Mo2	117.7 (4)
N3-Mo1-N1	91.6 (2)	C28-N4-Mo2	120.6 (4)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{N} 1$	87.95 (17)	C35-N5-C36	117.4 (5)
N5-Mo1-N1	173.13 (18)	C35-N5-Mo1	115.4 (4)
Mo1-Mo2-N4	92.81 (14)	C36-N5-Mo1	127.1 (4)
$\mathrm{Mo} 1-\mathrm{Mo} 2-\mathrm{O} 2$	92.45 (11)	C35-N6-C43	117.8 (5)
N4-Mo2-O2	174.51 (17)	C35-N6-Mo2	117.5 (4)
Mo1-Mo2-N6	91.96 (13)	C43-N6-Mo2	124.3 (4)
N4-Mo2-N6	91.58 (19)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	122.5 (5)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{N} 6$	89.82 (17)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	120.1 (5)
$\mathrm{Mo} 1-\mathrm{Mo} 2-\mathrm{N} 2$	93.49 (13)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.3 (5)
$\mathrm{N} 4-\mathrm{Mo} 2-\mathrm{N} 2$	92.7 (2)	$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$	117.6 (6)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{N} 2$	85.39 (17)	C4-C2-C1	121.6 (5)
N6-Mo2-N2	172.9 (2)	C3-C2-C1	120.9 (5)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Mo} 1$	116.9 (4)	$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	121.7 (6)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Mo} 2$	116.7 (4)	$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{C} 2$	120.8 (6)
C5-N1-C6	118.8 (5)	N2-C5-N1	120.7 (6)
C5-N1-Mo1	116.7 (4)	N4-C20-N3	119.5 (6)
C6-N1-Mo1	124.5 (4)	N5-C35-N6	121.3 (6)
C5-N2-C13	118.6 (5)		

Symmetry code: (i) $2-x, 2-y,-z$.

All H atoms were refined as riding atoms with isotropic displacement parameters. The molecules of interstitial hexanes were highly disordered and were refined with fixed partial site-occupancy factors. Disorder in a p-methoxy group of one of the N, N^{\prime}-di- p anisylformamidinate ligands caused slight oscillation of its H atoms; this gradually diminished as the structure was subjected to extended refinement cycles.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2000). SMART. Version 5.618. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Daniels, L. M., Donahue, J. P., Liu, C. Y. \& Murillo, C. A. (2002). Inorg. Chem. 41, 1354-1356.
Cotton, F. A., Donahue, J. P., Lin, C. \& Murillo, C. A. (2001). Inorg. Chem. 40, 1234-1244.
Cotton, F. A., Donahue, J. P. \& Murillo, C. A. (2001). Inorg. Chem. 40, 22292233.

Cotton, F. A., Donahue, J. P. \& Murillo, C. A. (2002). Inorg. Chem. Commun. 5, 59-63.
Cotton, F. A., Lin, C. \& Murillo, C. A. (2001a). Acc. Chem. Res. 34, 759-771.
Cotton, F. A., Lin, C. \& Murillo, C. A. (2001b). J. Am. Chem. Soc. 123, 26702671.

Cotton, F, A., Lin, C. \& Murillo, C. A. (2002). Proc. Natl Acad. Sci. USA, 99, 4810-4813.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

